富鎳三元層狀過渡金屬氧化物正極材料的改性方法研究綜述Research summary of modification of nickel-rich ternary layered transition metal oxides positive materials
殷志剛;王靜;郝彥忠;栗靖琦;錢近;
摘要(Abstract):
富鎳三元層狀過渡金屬氧化物正極材料因具有比容量高、價格低廉以及對環境友好等特性而備受關注,但受鋰鎳混排、相變反應、產氣、微裂紋、過渡金屬溶出、表面結構等影響,材料本身存在循環容量衰減等問題。針對正極材料循環容量衰減過快、高溫性能不佳等問題,總結了近年來國內外關于富鎳三元層狀過渡金屬氧化物正極材料的改性方法,包括表面包覆材料合成、元素摻雜材料制備、核殼結構材料開發、濃度梯度材料設計等優化方法,指出高鎳層狀過渡金屬氧化物正極材料的應用需要從不斷完善材料制備方法、改變材料性狀、降低材料成本等方面入手,開發高能量密度的鋰離子電池,使富鎳三元層狀過渡金屬氧化物正極材料在動力電池領域盡早得到廣泛應用。
關鍵詞(KeyWords): 電化學;富鎳正極;過渡金屬氧化物;改性研究;容量衰減
基金項目(Foundation): 國家自然科學基金(21173065,21603053);; 河北省自然科學基金(B2014208062,B2014208066)
作者(Author): 殷志剛;王靜;郝彥忠;栗靖琦;錢近;
Email:
DOI:
參考文獻(References):
- [1] MIAO Y,HYNAN P,von JOUANNE A,et al.Current Li-ion battery technologies in electric vehicles and opportunities for advancements[J].Energies,2019,12(6):1074-1093.
- [2] YANG C Y,CHEN J,JI X,et al.Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J].Nature,2019,569(7755):245-250.
- [3] YIN Z G,XIAO Y,WANG X,et al.MoV2O8 nanostructures:Controlled synthesis and lithium storage mechanism[J].Nanoscale,2016,8(1):508-516.
- [4] YUAN X L,LIU X,ZUO J.The development of new energy vehicles for a sustainable future:A review[J].Renewable and Sustainable Energy Reviews,2015,42:298-305.
- [5] ZHOU W,YANG L,CAI Y S,et al.Dynamic programming for new energy vehicles based on their work modes (part I):Electric vehicles and hybrid electric vehicles[J].Journal of Power Sources,2018,406:151-166.
- [6] GUO D L,YANG M K,ZHANG L L,et al.Cr2O3 nanosheet/carbon cloth anode with strong interaction and fast charge transfer for pseudocapacitive energy storage in lithium-ion batteries[J].RSC Advances,2019,9(57):33446-33453.
- [7] ALAOUI C.Passive/active BTMS for EV lithium-ion batteries[J].IEEE Transactions on Vehicular Technology,2018,67(5):3709-3719.
- [8] CANO Z P,BANHAM D,YE S Y,et al.Batteries and fuel cells for emerging electric vehicle markets[J].Nature Energy,2018,3(4):279-289.
- [9] YANG X G,LIU T,WANG C Y.Innovative heating of large-size automotive Li-ion cells[J].Journal of Power Sources,2017,342:598-604.
- [10] XIE Q,LI W D,MANTHIRAM A.A mg-doped high-nickel layered oxide cathode enabling safer,high-energy-density Li-ion batteries[J].Chemistry of Materials,2019,31(3):938-946.
- [11] ZIEMANN S,MüLLER D B,SCHEBEK L,et al.Modeling the potential impact of lithium recycling from EV batteries on lithium demand:A dynamic MFA approach[J].Resources Conservation and Recycling,2018,133:76-85.
- [12] NITTA N,WU F X,LEE J T,et al.Li-ion battery materials:Present and future[J].Materials Today,2015,18(5):252-264.
- [13] WINTER M,BARNETT B,XU K.Before Li-ion batteries[J].Chemical Reviews,2018,118(23):11433-11456.
- [14] ENDO M,KIM C,NISHIMURA K,et al.Recent development of carbon materials for Li-ion batteries[J].Carbon,2000,38(2):183-197.
- [15] CHOU N H,PIERCE N,LEI Y,et al.Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes[J].Carbon,2018,130:105-111.
- [16] WOOD M,LI J L,RUTHER R E,et al.Chemical stability and long-term cell performance of low-cobalt,Ni-Rich cathodes prepared by aqueous processing for high-energy Li-ion batteries[J].Energy Storage Materials,2020,24:188-197.
- [17] SHI J L,XIAO D D,GE M Y,et al.High-capacity cathode material with high voltage for Li-ion batteries[J].Advanced Materials,2018,30(9):1705575.
- [18] LEE W,MUHAMMAD S,KIM T,et al.New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J].Advanced Energy Materials,2018,8(4):1701788.
- [19] YOON C S,PARK K J,KIM U H,et al.High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles[J].Chemistry of Materials,2017,29(24):10436-10445.
- [20] YOON C S,CHOI M H,LIM B B,et al.High-capacity Li[Ni1-xCox/2Mnx/2]O2 (x=0.1,0.05,0) cathodes for next-generation Li-ion battery[J].Journal of The Electrochemical Society,2015,162(14):A2483-A2489.
- [21] WU N T,WU H,KIM J K,et al.Restoration of degraded nickel-rich cathode materials for long-life lithium-ion batteries[J].Chem Electro Chem,2018,5(1):78-83.
- [22] XIA Y,ZHENG J M,WANG C M,et al.Designing principle for Ni-rich cathode materials with high energy density for practical applications[J].Nano Energy,2018,49:434-452.
- [23] LI M,LU J,CHEN Z W,et al.30 years of lithium-ion batteries[J].Advanced Materials,2018,30(33):1800561.
- [24] SONG B H,LI W D,YAN P F,et al.A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries[J].Journal of Power Sources,2016,325:620-629.
- [25] DING Y,MU D B,WU B R,et al.Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles[J].Applied Energy,2017,195:586-599.
- [26] LASZCZYNSKI N,SOLCHENBACH S,GASTEIGER H A,et al.Understanding electrolyte decomposition of graphite/NCM811 cells at elevated operating voltage[J].Journal of the Electrochemical Society,2019,166(10):A1853-A1859.
- [27] LIN F,MARKUS I M,NORDLUND D,et al.Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J].Nature Communications,2014,5:3529-3537.
- [28] FLORES E,VONRüTI N,NOVáK P,et al.Elucidation of LixNi0.8Co0.15Al0.05O2 redox chemistry by operando raman spectroscopy[J].Chemistry of Materials,2018,30(14):4694-4703.
- [29] SUN Y K,MYUNG S T,BANG H J,et al.Physical and electrochemical properties of Li[Ni0.4CoxMn0.6-x]O2 (x= 0.1~0.4) electrode materials synthesized via coprecipitation[J].Journal of The Electrochemical Society,2007,154(10):A937-A942.
- [30] AHN Y K,JO Y N,CHO W,et al.Mechanism of capacity fading in the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J].Energies,2019,12(9):1638-1647.
- [31] YOON C S,JUN D W,MYUNG S T,et al.Structural stability of LiNiO2 cycled above 4.2 V[J].ACS Energy Letters,2017,2(5):1150-1155.
- [32] KIM H,KIM M G,JEONG H Y,et al.A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material:Nanoscale surface treatment of primary particles[J].Nano Letters,2015,15(3):2111-2119.
- [33] MAKIMURA Y,ZHENG S J,IKUHARA Y,et al.Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy[J].Journal of The Electrochemical Society,2012,159(7):A1070-A1073.
- [34] GAO H,CAI J Y,XU G L,et al.Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode[J].Chemistry of Materials,2019,31(8):2723-2730.
- [35] GAN Z G,HU G R,PENG Z D,et al.Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB[J].Applied Surface Science,2019,481:1228-1238.
- [36] CHEN T,WANG F,LI X,et al.Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material[J].Applied Surface Science,2019,465:863-870.
- [37] BECKER D,B?RNER M,N?LLE R,et al.Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium ion batteries[J].ACS Applied Materials & Interfaces,2019,11(20):18404-18414.
- [38] LIU Y,TANG L B,WEI H X,et al.Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries[J].Nano Energy,2019,65:104043-103054.
- [39] RAMASAMY H V,SINHA S,PARK J,et al.Enhancement of electrochemical activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by precisely controlled Al2O3 nanocoatings via atomic layer deposition[J].Journal of Electrochemical Science and Technology,2019,10(2):196-205.
- [40] YANG X,TANG Y W,SHANG G Z,et al.Enhanced cyclability and high-rate capability of LiNi0.88Co0.095Mn0.025O2 cathodes by homogeneous Al3+ doping[J].ACS Applied Materials & Interfaces,2019,11(35):32015-32024.
- [41] NEUDECK S,STRAUSS F,GARCIA G,et al.Room temperature,liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material[J].Chemical Communications,2019,55(15):2174-2177.
- [42] HOU P Y,YIN J M,LI F,et al.High-rate and long-life lithium-ion batteries coupling surface-Al3+-enriched LiNi0.7Co0.15Mn0.15O2 cathode with porous Li4Ti5O12 anode[J].Chemical Engineering Journal,2019,378:122057-122065.
- [43] XU Y D,XIANG W,WU Z G,et al.Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating[J].Electrochimica Acta,2018,268:358-365.
- [44] MENG K,WANG Z X,GUO H J,et al.Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3[J].Electrochimica Acta,2016,211:822-831.
- [45] LIU B S,SUI X L,ZHANG S H,et al.Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2[J].Journal of Alloys and Compounds,2018,739:961-971.
- [46] YANG X,TANG Y W,QU Y H,et al.Bifunctional nano-ZrO2 modification of LiNi0.92Co0.08O2 cathode enabling high-energy density lithium ion batteries[J].Journal of Power Sources,2019,438:226978-226986.
- [47] LIU X P,CHEN Q Q,LI Y W,et al.Synergistic modification of magnesium fluoride/sodium for improving the electrochemical performances of high-nickel ternary (NCM811) cathode materials[J].Journal of The Electrochemical Society,2019,166(14):A3480-A3486.
- [48] DAI S C,YAN G J,WANG L,et al.Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating[J].Journal of Electroanalytical Chemistry,2019,847:113197-113206.
- [49] YUE P,WANG Z X,WANG J X,et al.A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials[J].Materials Letter,2013,110:4-9.
- [50] PARK K,PARK J H,CHOI B,et al.Metal phosphate-coated Ni-rich layered oxide positive electrode materials for Li-ion batteries:Improved electrochemical performance and decreased Li residuals content[J].Electrochimica Acta,2017,257:217-223.
- [51] MIN K,PARK K,PARK S Y,et al.Improved electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material via Li-reactive coating with metal phosphates[J].Scientific Reports,2017,7(1):7151-7160.
- [52] CHEN T,WANG F,LI X,et al.Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-Rich LiNi0.8Co0.15Al0.05O2 cathode material[J].Applied Surface Science,2019,465:863-870.
- [53] YAN W W,YANG S Y,HUANG Y Y,et al.A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries[J].Journal of Alloys and Compounds,2019,819:153048-153061.
- [54] WU Y P,RAHM E,HOLZE R.Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries[J].Electrochimica Acta,2002,47(21):3491-3507.
- [55] STOYANOVA R,ZHECHEVA E,KUZMANOVA E,et al.Aluminium coordination in LiNi1-yAlyO2 solid solutions[J].Solid State Ionics,2000,128:1-10.
- [56] KANG K,CEDER G.Factors that affect Li mobility in layered lithium transition metal oxides[J].Physical Review B,2006,74(9):94105-94111.
- [57] KONDRAKOV A O,GEBWEIN H,GALDINA K,et al.Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation[J].The Journal of Physical Chemistry C,2017,121(44):24381-24388.
- [58] WOO S W,MYUNG S T,BANG H,et al.Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al,Mg) substitution[J].Electrochimica Acta,2009,54(15):3851-3856.
- [59] KUGANATHAN N,ISLAM M S.Li2MnSiO4 lithium battery material:Atomic-scale study of defects,lithium mobility,and trivalent dopants[J].Chemistry of Materials,2009,21(21):5196-5202.
- [60] PAOLELLA A,BERTONI G,HOVINGTON P,et al.Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4[J].Nano Energy,2015,16:256-267.
- [61] LI C L,KAN W H,XIE H L,et al.Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability[J].Advanced Science,2019,6(4):1801406-1801413.
- [62] WU L P,TANG X C,CHEN X,et al.Improvement of electrochemical reversibility of the Ni-rich cathode material by gallium doping[J].Journal of Power Sources,2020,445:227337-227347.
- [63] SIM S J,LEE S H,JIN B S,et al.Improving the electrochemical performances using a V-doped Ni-rich NCM cathode[J].Scientific Reports,2019,9(1):1-8.
- [64] LI Y C,XIANG W,XIAO Y,et al.Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance[J].Journal of Power Sources,2019,423:144-151.
- [65] HE T,CHEN L,SU Y F,et al.The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-rich cathode materials[J].Journal of Power Sources,2019,441:227195-227202.
- [66] WU K,LI Q,DANG R B,et al.A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring[J].Nano Research,2019,12(10):2460-2467.
- [67] LONGO R C,LIANG C P,KONG F T,et al.Core-shell nanocomposites for improving the structural stability of Li-rich layered oxide cathode materials for Li-ion batteries[J].ACS Applied Materials & Interfaces,2018,10(22):19226-19234.
- [68] SHIN J W,SON J T.Core-shell-structured Li[Ni0.87Co0.08Al0.05]O2 cathode material for enhanced electrochemical performance and thermal stability of lithium-ion batteries[J].Journal of the Korean Physical Society,2019,74(1):53-56.
- [69] DONG X Y,YAO J Y,ZHU W C,et al.Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells[J].Journal of Materials Chemistry A,2019,7(35):20262-20273.
- [70] MAENG S,CHUNG Y,MIN S,et al.Enhanced mechanical strength and electrochemical performance of core-shell structured high-nickel cathode material[J].Journal of Power Sources,2019,448:227395-227404.
- [71] DUAN J G,HU G R,CAO Y B,et al.Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping[J].Journal of Power Sources,2016,326:322-330.
- [72] SU Y F,CHEN G,CHEN L,et al.High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries[J].ACS Applied Materials & Interfaces,2019,11(40):36697-36704.
- [73] ZHANG Y D,LI H,LIU J X,et al.LiNi0.90Co0.07Mg0.03O2 cathode materials with Mg-concentration gradient for rechargeable lithium-ion batteries[J].Journal of Materials Chemistry A,2019,7(36):20958-20964.
- [74] LIANG M,SUN Y M,SONG D W,et al.Superior electrochemical performance of quasi-concentration-gradient LiNi0.8Co0.15Al0.05O2 cathode material synthesized with multi-shell precursor and new aluminum source[J].Electrochimica Acta,2019,300:426-436.
- [75] LIAO J Y,MANTHIRAM A.Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries[J].Journal of Power Sources,2015,282:429-436.